2866. 美丽塔 II
# 2866. 美丽塔 II (opens new window)
# 1.单调栈+前缀和
遍历列表,以每个坐标作为顶点,求出满足山脉数组定义的左右两侧的高度和,时间O(n*n)超时。
优化方法:预先求出以每个i为顶点的左右两侧前缀和。山脉数组的前缀和满足单调性质,可以采用单调栈来计算,找到前一个波峰。
class Solution {
public long maximumSumOfHeights(List<Integer> maxHeights) {
long res = Integer.MIN_VALUE;
long[] prefix = new long[maxHeights.size()];
long[] suffix = new long[maxHeights.size()];
Stack<Integer> stack1 = new Stack<>();
Stack<Integer> stack2 = new Stack<>();
for (int i = 0; i < maxHeights.size(); i++) {
//前缀和
while (!stack1.isEmpty()) {
if(maxHeights.get(stack1.peek())>=maxHeights.get(i)) stack1.pop();
else break;
}
prefix[i] = stack1.isEmpty() ? 1l*(i + 1) * maxHeights.get(i) : prefix[stack1.peek()] + 1l * (i - stack1.peek()) * maxHeights.get(i);
stack1.push(i);
//后缀和
int k=maxHeights.size()-i-1;
while (!stack2.isEmpty()) {
if(maxHeights.get(stack2.peek())>=maxHeights.get(k)) stack2.pop();
else break;
}
suffix[k] = stack2.isEmpty() ? 1l * (maxHeights.size() - k) * maxHeights.get(k) : suffix[stack2.peek()] + 1l * (stack2.peek() - k) * maxHeights.get(k);
stack2.push(k);
}
for (int i = 0; i < maxHeights.size(); i++) {
int pre=maxHeights.get(i);
long sum=prefix[i]+suffix[i]-maxHeights.get(i);
res = Math.max(res, sum);
}
return res;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
编辑 (opens new window)
上次更新: 2024/01/04, 16:53:23